Designed to simulate neural systems ranging from subcellular
components and biochemical reactions to complex models of single
neurons, circuits, and large networks.
MOOSE Features
Python Interface
Available as a Python module with predefined classes that map
directly to biological components.
Modeling across domains
Supports both biochemistry and biophysics for integrated
simulations.
Scalability
Built-in solvers with optimized data structures and algorithms
handle complex models efficiently, yet maintain a biologically
meaningful view for the user
Multiscale Capability
Enables seamless modeling from stochastic chemical processes and
reaction-diffusion systems to multi-compartmental neuron models and
large-scale biological neural networks.
Format Support
Handles multiple model formats, including SBML, NeuroML, and
GENESIS(kkit, cell.p) Data can be saved in text, HDF5 based NSDF, or
any other format compatible with numpy arrays
Rdesigneur
Simplifies the model-building process for faster creation and
testing of integration models using a library of prototype
components.
Mode Switching
Easily toggles between deterministic and stochastic simulation modes
for biochemical models.
Single Neuron Electrical Aspects
Neurons modeled as equivalent electrical circuits.
Somashekar, B. P., & Bhalla, U. S. (2025). Discriminating neural ensemble patterns through dendritic computations in randomly connected feedforward networks. eLife, 13, RP100664.
02
Bhalla, U. S. (2021). HillTau: A fast, compact abstraction for model reduction in biochemical signaling networks. PLoS Computational Biology, 17(11), e1009621.
03
Bhatia, A., Moza, S., & Bhalla, U. S. (2019). Precise excitation-inhibition balance controls gain and timing in the hippocampus. Elife, 8, e43415.
04
Viswan, N. A., HarshaRani, G. V., Stefan, M. I., & Bhalla, U. S. (2018). FindSim: a framework for integrating neuronal data and signaling models. Frontiers in Neuroinformatics, 12, 38.
05
Bhalla, U. S. (2017). Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites. Elife, 6, e25827.
06
Brocke, E., Bhalla, U. S., Djurfeldt, M., Hellgren Kotaleski, J., & Hanke, M. (2016). Efficient integration of coupled electrical-chemical systems in multiscale neuronal simulations. Frontiers in Computational Neuroscience, 10, 97.
07
Gilra, A., & Bhalla, U. S. (2015). Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One, 10(5), e0098045.
08
Jain, P., & Bhalla, U. S. (2014). Transcription control pathways decode patterned synaptic inputs into diverse mRNA expression profiles. PloS One, 9(5), e95154.
09
Dudani, N., Bhalla, U. S., & Ray, S. (2014). MOOSE, the Multiscale Object-Oriented Simulation Environment. In D. Jaeger & R. Jung (Eds.), Encyclopedia of Computational Neuroscience. Springer New York. https://doi.org/10.1007/978-1-4614-7320-6_257-1
10
Bhalla, U. S. (2011). Multiscale interactions between chemical and electric signaling in LTP induction, LTP reversal and dendritic excitability. Neural Networks, 24(9), 943–949.
11
Bhalla, U. S. (2011). Trafficking motifs as the basis for two-compartment signaling systems to form multiple stable states. Biophysical Journal, 101(1), 21–32.
12
Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans, T. C., Bhalla, U. S., Diesmann, M., Hellgren Kotaleski, J., & Ekeberg, Ö. (2010). Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics, 8, 43–60.
13
Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., Morse, T. M., Davison, A. P., Ray, S., Bhalla, U. S., & others. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Computational Biology, 6(6), e1000815.
14
Jain, P., & Bhalla, U. S. (2009). Signaling logic of activity-triggered dendritic protein synthesis: an mTOR gate but not a feedback switch. PLoS Computational Biology, 5(2), e1000287.
15
Ray, S., & Bhalla, U. S. (2008). PyMOOSE: Interoperable scripting in Python for MOOSE. Frontiers in Neuroinformatics, 2. https://doi.org/10.3389/neuro.11.006.2008
Funders
Read Our Blogs
Explore insights, updates, and stories on our Software and
community.